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Abstract
We report on an experimental and theoretical nuclear quadrupole resonance
(NQR) multiple-pulse spin-locking study of the thermal mixing process in
solids containing nuclei of two different sorts, I > 1/2 and S = 1/2, coupled
by dipole–dipole interactions and influenced by an external magnetic field. Two
coupled equations for the inverse spin temperatures of both the spin systems
describing the mutual spin–lattice relaxation and the thermal mixing were
obtained using the method of the nonequilibrium state operator. It is shown
that the relaxation process is realized with non-exponential time dependence
described by a sum of two exponents. The calculated relaxation time versus the
multiple-pulse field parameters agrees well with the obtained experimental data
in 1,4-dichloro-2-nitrobenzene. The calculated magnetization relaxation time
versus the strength of the applied magnetic field agrees well with the obtained
experimental data.

1. Introduction

The concept of a relaxation process, as a means of exchanging spin energy between different
kinds of nuclei, has been introduced in order to explain the nuclear magnetic relaxation in solids
in which a few spins change their spin states simultaneously [1, 2]. Such type of relaxation
originates from the magnetic dipole–dipole interaction between nuclear spins [3, 4]. A quantum
system with such complicated dynamics is often analyzed using a thermodynamic approach
based on the concept of spin temperature [4]. The most successful example is Provotorov’s
saturation theory [5], which describes the thermal mixing between Zeemann and dipole–dipole
thermodynamic reservoirs in a weak excitation field and explains various phenomena in solid-
state nuclear magnetic resonance (NMR).

In the present paper we study the thermal mixing process in a very weak external magnetic
field, H0 � 10 G, in solids containing nuclei of two different sorts, I > 1/2 and S = 1/2,
coupled by the dipole–dipole interactions by using nuclear quadrupole resonance (NQR)
multiple-pulse spin-locking [6–8] acting only on quadrupole nuclei, I . Usually, thermal mixing
can be achieved when the nutation frequencies of both the I and S nuclei are close to one
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another (the Hartmann–Hahn condition [9]) [4]. The nutation frequency of the quadrupole
transition of nuclei I depends on the multiple-pulse fields parameters, such as radiofrequency
(RF) field strength, pulse duration, tw, and period of the pulse sequence, tc [10], while
the nutation frequency of the nuclear S in the very weak external magnetic field, H0, is
completely defined by the strength of the dipole–dipole interactions, which has an order of
about HSS ∼ 1 G. Instead of the classical picture of thermal mixing, where 1H NMR and 35Cl
NQR frequencies in the rotating frame are equal (or nearly equal) [4], we assume that a similar
process takes place between the chlorine thermodynamic reservoir in the effective field (He) of
the multiple-pulse sequence and the dipole–dipole thermodynamic reservoir of the hydrogen in
a very weak external magnetic field (H0) under the condition γCl He � γH HSS. Here γCl and γH

are the gyromagnetic ratios of the nuclear spins of chlorine and hydrogen, respectively. Using
a sequence of coherent radiofrequency pulses acting on the nuclear spins I with resonance
quadrupole frequency and applying an additional external magnetic field H0, the rate of the
thermal mixing process can be regulated due to the control of the fulfillment of the Hartmann–
Hahn condition. In order to analyze the experimental results and explain the dynamics of the
nuclear spin system due to the influence of the RF and magnetic fields we apply the method of
the nonequilibrium state operator [11]. The thermal mixing rate is defined by nuclear dipolar
interactions. Therefore, the measurement of the time of this relaxation process provides a way
for studying slow atomic motion in solids and the determination of the molecular structure
parameters.

2. Experiments

The experiments were performed using a multiple-pulse home-built spectrometer. A weak
magnetic field of 2.3 G < H0 < 50 G was produced using the Helmholtz coils in the direction
of the multiple-pulse radiofrequency field. A 35Cl NQR signal was observed in the effective
field, ωe = γCl He, of a multiple-pulse RF sequence (π/2)y − (tc/2 − θx − tc/2)N , where θx

denotes the pulse that rotates the nuclear magnetization about the direction of RF field in the
rotating frame by an angle θx around the X -axis, and N is the number of pulses in the sequence.
This sequence consisted of N � 256 pulses, and the spin-locking signal was sampled in the
interval between them. The NQR of 35Cl nuclei, both of the nucleus 35Cl(a) and the nucleus
35Cl(b) (figure 1), was observed in the polycrystalline 1,4-dichloro-2-nitrobenzene compound
at the frequencies of 37.869 MHz and 35.502 MHz, respectively. The 35Cl(a) NQR relaxation
times were measured at 77 K. The period of the pulse sequence was tc = 100 μs. The 35Cl(b)

NQR spectra and relaxation times were measured at 295 K. The period of the pulse sequence
tc was 50 μs. The spectra and line width were obtained using Fourier transformation of the
Hahn echo signal. Figure 2 displays the dependence of the line width on the magnetic field
strength H0. The relaxation time in the effective field of the multiple-pulse RF sequence shows
visible changes for the influence of the external magnetic field H0. Magnetization decay is
well described by two exponential functions at 295 K. The pre-exponent coefficients for the
long components of the relaxation times are larger than those for the short components. The
characteristic time of the long exponent was taken as T exp

1e . The pulse angular duration is not
determined in powder NQR, so, by analogy with NMR, we have considered that θx = π

2 when
the induction decay amplitude is maximum and θx = π when it is minimum. The validity of
such an approach in some multipulse experiments has been confirmed previously [12].

3. Theory

3.1. The Hamiltonian of the system

The evolution of the spin system consisting of quadrupole nuclear spins I > 1/2 and spins 1/2
and influenced by the external multiple-pulse RF field acting only on the quadrupole nuclear
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Figure 1. Structure of the molecule 1,4-dichloro-2-nitrobenzene.
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Figure 2. Dependence of 35Cl(a) NQR line width on the external magnetic field strength H0.

spins at exact resonance and the weak magnetic field H0 can be described by a solution of the
equation for the density matrix ρ(t) (in units of h̄ = 1)

i
dρ(t)

dt
= [H(t), ρ(t)] (1)

with the Hamiltonian

H(t) = HQ + Hz + HI S + HI I + HS + Hrf(t)+ Hbr (t). (2)

Here HQ represents the interaction of the I -spin system with the electric field gradient (EFG);
Hz = γI H0 Ix describes the influence of the I -spin system with the external magnetic
field: here γI is the gyromagnetic ratio of the nuclear spins I ; HI S, and HI I are the
Hamiltonians of the dipole–dipole interaction between I –S and I –I nuclear spins, respectively;
Hbr(t) = ∑2

q=−2 E (−q)(t)Aq , the spin–lattice interaction Hamiltonian, describes the spin–
lattice relaxation caused by the torsional vibrations (Bayer mechanism) [13], where Aq is a
bilinear function of the spin operators and E (−q)(t) is a random function of time [14]. HS is
the Hamiltonian of the S-spin system, and it includes interaction with the weak magnetic field
H0 and dipole–dipole interaction between S–S spins. Hrf(t) gives the action of the RF field on
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the I -spin system,

Hrf(t) = 2
∑

i

ω1(t)(�a · �I i ) cos(ωt + φ), (3)

where ω is the NQR resonance frequency. f (t) = θ0δ(t) and φ = 0 for the preparatory pulse
and ω1(t) = θ

∑∞
k=0 δ[t − (k + 1

2 )tc] and φ = π/2 for the remaining pulses; θ = γI H1tw. H1

and tw are the amplitude and pulse duration of the RF pulses; �a is a unit vector directed along
the RF field.

Using the projection operators ei
mn for the nuclear spins I and ε j

mn for S = 1/2 spins [15],
defined by their matrix elements 〈m ′|ei

mn|n′〉 = δm′mδn′n and 〈ν ′|ε j
νσ |σ ′〉 = δν′νδσ ′σ and

commutation relations,

[ei
mn, ε

j
m′n′ ] = 0 (4)

and

[ei
mn, e j

m′n′ ] = δi j(δnm′ei
mn′ − δn′mei

m′n), (5)

the following expressions can be obtained:

HQ = (2I + 1)−1
∑

i

∑

mn

ω0
mnei

mm, ω0
mn = λm − λn (6)

HI S =
∑

i j

∑

mnm′n′
Di j

mnm′n′ei
mnε

j
m′n′, (7)

HI I =
∑

i j

∑

mnm′n′
Gi j

mnm′n′ei
mne j

m′n′ , (8)

Hz =
∑

i

∑

mn

ωI I i
mnei

mn, ωI = γI H0 (9)

Hrf(t) = 2
∑

i

∑

mn

ω1(t)(�a · �I )mn cos(ωt + φ)ei
mn, (10)

where λm are the eigenvalues of the operator HQ, |m〉 and |n〉 are the eigenvectors of the
operator HQ, and |σ 〉 and |ν〉 are the eigenvectors of the operator HS. Di j

mnm′n′ , Gi j
mnm′n′ , and

I i
mn are matrix elements of the dipole–dipole Hamiltonians HI S, HI I and operator (�a �I ) in HQ-

representation, respectively.

Hbr (t) =
∑

i

∑

q

∑

mn

E (−q)(t)Aq
mnei

mn . (11)

The spin system is situated in an inner EFG coupled with the nuclear quadrupole moment
to produce an interaction that is assumed to be very large in comparison to the dipole–
dipole interaction. For this case, the nonsecular terms of the Hamiltonian H (t) (those terms
that do not commute with the HQ) may be neglected. The procedure of the separation
of the truncated Hamiltonians H (t) can be carried out by using the unitary transformation
ρ(t) = P+(t)ρ̃(t)P(t) with

P(t) = exp

{

it (2I + 1)−1
∑

i

∑

mn

ωmnei
mm

}

, (12)

where ωmn = ω from equation (4) if ω is equal to resonance frequency ω0
mn and ωmn = ω0

mn
otherwise. After the transformation we obtain

i
dρ̃(t)

dt
= [H̃(t), ρ̃(t)], (13)

4
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with

H(t) = Hsec
z + Hsec

I S + Hsec
I I + HS + H̃rf(t)+ H̃br (t). (14)

Hsec
I S =

∑

i j

∑

mnm′n′
di j

mnm′n′ei
mnε

j
m′n′ , (15)

Hsec
I I =

∑

i j

∑

mnm′n′
gi j

mnm′n′ei
mne j

m′n′ , (16)

Hsec
z = 0, (17)

H̃rf(t) =
∑

i

∑

mn

ω1(t)(δω,ωmn + δω,ωnm )e
i
mn, (18)

where di j
mnm′n′ = Di j

mnm′n′(δmn + δmn̄) and

gi j
mnm′n′ = Gi j

mnm′n′ [(δmn + δm′n′)(δmn̄ + δm′n′)+ (δmn′ + δm′n)(δmn̄′ + δm′n̄)].

3.2. The effective Hamiltonian

The multiple-pulse action on the spin system consists of the preparatory θ0-pulse taking
the spin system out of equilibrium and the multiple-pulse sequence. The density matrix,
ρ+(0), immediately after the action of the preparatory pulse forms the initial condition for
equation (13) describing the evolution of the spin system under the mutual influence of the
multiple-pulse sequence and the external weak magnetic field.

To solve equation (2), we apply the unitary transformation

ρtr(t) = P+(t)ρ(t)P(t), (19)

where the unitary operator P(t) is given by the solution of the equation

i
dP(t)

dt
= H̃(t)P(t) − P(t)He (20)

with the initial condition

P(0) = 1 (21)

and the effective time-independent Hamiltonian

He = ωe

∑

i

(�l �Ki)+ ωI

∑

i

∑

mn

I i
mnei

mn . (22)

Here, ωe = θ
tc

is the effective frequency, �l (lx = 1, ly = 0, lz = 0) is the unit vector of

the effective field �ωe, and �K i is the effective spin operator satisfying the commutation rule:
[Ki

x,Ki
y] = iK i

z [8].
After performing the unitary transformation (19), we obtain the following equation for the

transformed density matrix ρtr(t):
dρtr(t)

dt
= [Htr(t), ρtr(t)] (23)

with the Hamiltonian

Htr(t) = He + HS + V (t), (24)

where

V (t) =
2∑

p=−2

c0
pHp

I I +
∞∑

n=−∞

{ 2∑

p=−2

cn
pHp

I I +
1∑

p=−1

cn
p

[Hp
I S + Hp

br (t)
]
}

e−iωn t , (25)

and

ωn = 2πn

tc
, ck

p = (−1)n sin pψ

2πn + pψ
, p = 0,±1,±2, (26)

where ψ = θx
2 , for ωe < ωloc

I I and ψ = π−θx
2 for ωe � ωloc

I I =
√

Tr{H 2
I I }/Tr{ �I 2} [16].
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3.3. Kinetic equations

In the case of ωe ≈ ωloc
S 
 ωI S 
 ωloc

I I (here ωloc
g ∼ ‖Hg‖, the norm of the operator

Hg, and g ≡ S, I S) which takes place, for example, if γI  γS , the spin system can be
characterized by the two integrals of motion He and HS, ([He,HS] = 0). To obtain the kinetic
equations describing the long-time evolution of the spin system we will use the method of
the nonequilibrium state operator [11]. Following Zubarev [11], we assume that the quasi-
equilibrium state is established in the spin system; the density matrix in the high-temperature
approximation can be written as

ρqe = 1 − αHe − βHS, (27)

and the term V (t) in equation (24) can be considered as a perturbation.
The equations that describe the time evolution of the quantities α and β from equation (27)

can be obtained using a well-known procedure [4]. The result is

dα

dt
= − 1

T cross
1e

(α − β)− 1

T1e
(α − βL) (28)

dβ

dt
= 1

T cross
1e

(α − β)− 1

T1
(β − βL). (29)

Here, α and β are the inverse spin temperatures of the I -spin and S-spin systems, respectively,
βL = (kT )−1, k is the Boltzmann constant and T is the lattice temperature, T1e and T1 are the
spin lattice relaxation times of the I spin system and S spin system,

1

T mix
1e

= c0
1c0

−1

∫ ∞

0
dτξ(τ ) cos[(ωe − ωloc

S )− ωS]τ (30)

is the cross-relaxation rate, characterizing the process of establishing the thermal equilibrium
between the I and S spin systems under the fulfillment of the Hartmann–Hahn condition

ωe = ωloc
S , (31)

where ωS = γS H0, γS is the gyromagnetic ratio of the nuclear spins S, and ξ(τ ) is the
correlation function

ξ(τ ) = Sp(Hp
I SeiHSτH−p

I S e−iHSτ )

Sp(Hp
I SH−p

I S )
. (32)

4. Results and discussions

The equation for the nuclear magnetization M = Sp(ρqeKi
x), the quantity needed to compare

with experiment, can be found using equations (28) and (29). It is evident that the evolution of
the nuclear magnetization is described by two exponential functions.

If the spin–lattice relaxation times T1e and T1 are closed, T1e � T1, then the magnetization
of the nuclear spins I decays according to the expression

M(t) ∼ ae
− t

T
exp
1e + be

− t
T a

1e , (33)

where
1

T exp
1e

= 2

T mix
1e

+ 1

T1e
(34)

and

T a
1e = T1e. (35)
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Figure 3. Dependence of the thermal mixing rate 1
T exp

1e
on the pulse sequence parameter θx . The

open circles are experimental data of 35Cl(a) NQR at 77 K [17]. The solid line is a least-squares fit
to expression (37).

This result (equation (33)) is in agreement with that obtained in the experiments [17]; the
nuclear magnetization decay is well described by two exponential functions. To calculate the
relaxation time T mix

1e (30), the correlation function ξ(τ ) (32) is needed. Using equation (30) we
can define the dependence of the cross-relaxation rate 1

T mix
1e

on the pulse sequence parameters θ :

1

T mix
1e

∼ c0
1c0

−1 =
[

sin( π−θ
2 )

( π−θ
2 )

]2

. (36)

From equations (34) and (36) we have

1

T exp
1e

∼
[

sin( π−θ
2 )

( π−θ
2 )

]2

+ 1

T1e
. (37)

Figure 3 represents the good agreement between fitting using equation (37) with T1e = 500 ms
at 77 K and experimental data for 35Cl(a) [17].

It has been shown [17] that the relaxation time T exp
1e is very sensitive to change in the weak

magnetic field. T exp
1e increased from 2.1 to 18.2 ms at 295 K. Such changing of the cross-

relaxation time can be explained as being that the application of the magnetic field moves the
system away from the Hartmann–Hahn condition. In order to obtain the dependence of the
cross-relaxation rate on the magnetic field strength we can use the simplest approximation for
the correlation function ξ(τ ) [9]:

ξ(τ ) = ξ(0)e−( τ
τc
)2, (38)

where τc is the correlation time of the S-spins. After performing the integration over τ in (30),
we obtain

1

T mix
1e

∼ exp

{

−
[ [τc(γS H0 + ωe − ωloc

S )]
2

]2}

. (39)
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Figure 4. Dependence of the thermal mixing rate 1
T exp

1e
on the magnetic field strength, H0. The

open circles are experimental data of 35Cl(b) NQR at 295 K. The solid line is a least-squares fit to
expression (40).

From equations (34) and (39) we have

1

T exp
1e

∼ exp

{

−
[ [τc(γS H0 + ωe − ωloc

S )]
2

]2}

+ 1

T1e
. (40)

Figure 4 demonstrates the good agreement of the dependence of the relaxation rate described
by equation (40) on the magnetic field strength obtained for 35Cl(b) at 295 K. In equation (40),
T exp

1e is the longer component of the measured relaxation time. The relaxation time T1e has
been chosen as a limit to which the cross-relaxation time aspires at the applied magnetic field
H0 greater than the width of a line, and was chosen as T1e = 20 ms, which is close to the
experimental spin–lattice relaxation time at 295 K, T1 = 31.5 ± 1.0 ms.

5. Conclusion

In conclusion, we obtained strong experimental evidence that a thermal mixing process takes
place in multiple-pulse spin-locking in solids containing both 35Cl and 1H nuclei. We showed
that, in 1,4-dichloro-2-nitrobenzene powder, the action of a sufficiently weak external magnetic
field breaks the Hartmann–Hahn condition, γCl He � γH HSS, resulting in an increase of the
relaxation time. We obtained the kinetic equations, which allow us to find the time dependence
of the nuclear magnetization. The thermal mixing time is calculated as a function of the
multiple-pulse field parameters and strength of the external magnetic field H0. The analytical
expressions obtained give results that are in good agreement with the experimental data and can
be useful for extracting important information about the molecular dynamics and structure.
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